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Abstract

3D models are used in many areas, from medical applications to the development of
games. Especially in games and animated movies a lot of 3D models are required and
created and the creation process of these is very time consuming. This is one point,
which makes creating games or animated movies very expensive and time-consuming in
general. To create 3D models faster, artists could be supported by algorithms, which
assist them in their workflow. The idea is to reuse parts of existing models and fuse them
together with the help of algorithms. Thus in sum a huge amount of time could be saved
in the creation of 3D models. We present an overview of existing blending techniques
and their advantages and disadvantages. We create our own algorithms, which we use to
evaluate how much time artists can save.
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CHAPTER 1
Introduction

3D models are digital representations of objects in virtual environments. They can be,
for example, characters or scene objects for animated movies or games. The models are
also used to represent technical parts for fabrication or simulation and also for medical
purposes, like 3D scans of an human. For the game development a high amount of
different models is needed and the creation of these is a time-consuming task for the
artists [MT09] [XH07] [AS06].

The goal of the thesis is to find ways, how to assist artists in the first part of their
workflow, creating a 3D model. The thesis does not cover the rest of the workflow,
like, for example, baking normal or UV-maps. Whenever artists start to create a new
model, they can choose to either create it from scratch or use alternate methods like,
for example, Photogrammetry, 3D Scans of objects or merge together parts of already
existing models. Photogrammetry means to get the mesh of a real object by taking
photos of it from different angles and calculate the shape from the image data. In this
work we present an approach, improving the creation process of artists, when merging
together existing models. The widely spread term for that is called mesh fusion [MT09]
or mesh blending [YSL05]. Figure 1.1 shows the workflow of the artists when using
parts of existing models with our approach. Using existing models only works, when
there is already a good database of models available. This can be the models of, for
example, the last game or animated movie, everything created so far for the current
project or models from external sources. When an artist found reusable parts, the next
step is to prepare them for the algorithm. First, the artist has to cut off the parts he
or she wants to use from the existing models. We did this with the difference boolean
operation in Blender [Fou18], for example. Afterwards all the parts have to be placed
to fit the needs of the artist and the algorithm. For example, if we want to create a
three-headed dragon, we place the three heads in front of the dragon with a gap between
like shown in Figure 1.3a. Before running the algorithm the artist can parameterize
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1. Introduction

Figure 1.1: Workflow for the artists when merging together parts of existing models. The
pictures of the 3D Models are from [Inf08], [fis11], [Shp15] and [Dyn08]

the algorithm if needed. This can be necessary, for example, when we have to specify
a blending start and end point or optional, for example, when we want to change the
transition by providing a transition function. After the algorithm is performed, an artist
can still make changes and improvements by hand, if the result does not fit the artists
needs perfectly. If the artist is satisfied with the model, he or she can proceed with

2



the usual workflow and create textures, normal maps, UV maps, animations and so on.
Figure 1.2 illustrates a result of merging two source models provided by our approach.
Figure 1.2a shows, what the artist has to create. We used the top of a human body and

(a) The body and tails, like the
artist placed them.

(b) After the use of the algo-
rithm.

Figure 1.2: Model of the octopus man before the algorithm and afterwards. We used
our non-overlapping algorithm with transition function e−5∗x3 and turn rate function
sin(x ∗ π)/6. The base meshes were obtained from [Dyn08] and [Shp15].

the tail of a snake and copied it several times. What is seen in Figure 1.2b has been
inserted by our non-overlapping algorithm. Although, the user has to specify the space
between the body and the tails by setting a start and end point for the blending. So
when there are already base meshes, which the artist can combine, he or she can create
new models much faster. Exact measurements will be discussed later.

Another example is the three-headed dragon (see Figure 1.3), which was created by
cutting the head off an existing dragon, copying and placing the heads near to the body,
leaving an empty area in between and then letting an algorithm do the rest.

There are rich possibilities of how tools can assist an artist. But one problem so
far in the field of 3D mesh fusion is, that the algorithms still require high user interaction.
At least the user has to decide which algorithm to use in which case, because one may
produce better results in a particular case than another one. There is no algorithm,
which detects every case perfectly and chooses the right blending technique. E.g., the
leg and the body of a character is blended by technique A, and the leg and the foot
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1. Introduction

(a) The dragon body and heads, like the artist placed them.

(b) The heads are smoothly merged to the body with our non-overlapping
algorithm.

Figure 1.3: Model of a three-headed dragon before the algorithm and afterwards. We
used the linear transition function x and no turn rate function. The dragon model is
from [Inf08].

is blended by technique B and this is detected automatically. But there is a chance,
when there are good combinable techniques, to achieve better tools in the future. So
for now, there only could be a set of tools, from which the artist has to select the right
one for his or her particular case. Nevertheless, the use of different tools is easy to learn
and experienced quickly. The work will prove the worthiness of creating small tools to
enhance the modeling process, at least in some cases. This creates the basis for a variety
of more powerful tools.

4



These are the main research questions:

• How can algorithms assist artists in their workflow?

• How much time can be saved in using such algorithms?

To answer that, a literature review is conducted to show what techniques are already
present, a new algorithm is developed and the results are evaluated by comparing time
requirements for the modeling process for both, crafting by hand and using the developed
algorithm.

The structure of the work is as follows. First, existing techniques are presented, classified
and discussed. Some subproblems that occur and different possible solutions for them
will be discussed. Afterwards we present our methods and what problems and limitations
we encountered. At the end it is shown, how much time an artist can possibly save, when
using the introduced method.
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CHAPTER 2
Overview of blending techniques

In this chapter we give an overview of the existing blending techniques and are classifying
them. First of all every technique can have the following characteristics:

• Additive

• Subtractive

• Combined

(a) Additive technique. (b) Initial setup. (c) Subtractive technique.

Figure 2.1: Difference between additive and subtractive. Figure b) shows the initial
setup. An additive technique would solve the problem by adding volume, see Figure a).
A subtractive technique would solve the problem by removing volume, see Figure b).

Figure 2.1 illustrates the difference between the characteristics. The additive tech-
niques are more commonly used. In these techniques new volume is created without
changing the original data. Good examples for additive techniques are the ones from
Lu et al. [MT09] and Wang et al. [XJ06]. The technique of Gao et al. [XW15], for
example, is mostly additive, but they are changing the original data by smoothing
the borders of the objects and thus is categorized as combined. A rare example of a
technique, which can be purely subtractive as well, is the rolling ball described by Yong
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2. Overview of blending techniques

Figure 2.2: The Rolling Ball technique can be used as a subtractive technique. It is like
milling the meshes with the ball.

et al. [YSL05], as seen in Figure 2.2 from Figure 4 of their work. In this example the
volume is getting less, like we would mill with the ball. This can be achieved with the
parameterization of their technique. In general their technique is categorized as combined.

All techniques that we came across can be put in one of the following four classes.
We are introducing these names based on our own observation.

• Non-overlapping techniques

• Overlapping techniques

• Morphing techniques

• Volumetric techniques

2.1 Mesh techniques

2.1.1 Non-overlapping techniques

Most of the techniques build up a surface transition in the space between two or more
objects. So the objects are not touching each other and the gap or missing information
between objects is filled up. This is why we call them “non-overlapping techniques” in
this thesis. Because of this nature, they are commonly purely additive. These techniques
are very promising to aid artists in their work. There are fast ways to implement such a
technique and in many cases it would take the artist a much longer time to fill the space
by hand. We implemented such a technique and will show that it is able to provide good
results.

A good example for a non-overlapping technique is the work of Lu et al. [MT09]. They
had the goal to improve the modeling process as well. The three-headed dragon seen
in 1.3b was achieved very similar to their technique described in the paper. The difference
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2.1. Mesh techniques

Figure 2.3: Create angular correspondence by overlapping the border contours of the
meshes and shooting rays from the mid to all vertices. Points that are hit by the same
ray do correspond. The black lines represent the contour of one mesh and the blue lines
of the other one. The gray patches are the connecting surfaces of the first mesh.

Figure 2.4: Example of the walking hand, which is created by merging together a hand
with 2 legs. The objects are placed with a gap in between and a transition surface is
created to connect them.

is, that we have to specify the start and end point in our technique and the transition
can be parameterized with our solution. Their technique finds openings by checking
which edges are only used once. Therefore, it only works for single openings. The, in
this way found, contours are projected onto a plane. With that projections, they can
overlap the contours, calculate mid-points and shoot rays from the mid to the outside in
different angles. This is illustrated in Figure 2.3 from Lu et al. [MT09] Figure 7. The
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2. Overview of blending techniques

intersections of one ray on the contours now have a perfect correspondence. This allows
interpolations of the contours to get a smooth transition. The ray shooting is used and
improved during our work and will be discussed again later on.

Wang et al. did something similar [XJ06]. The main difference is, that they are using
implicit functions to describe the openings. In addition, they can cope with multiple
openings. They use scattered data interpolation [GT05] to calculate the implicit functions
of the openings. That means, that they are searching a function, which interpolates all
vertices best. Mathematically this can be expressed as a linear equation system and
solved. Another possible approach to calculate the implicit functions of the openings, is
by using a signed distance field and sample it on a regular grid. They have implemented
it as well and compare it in their work. Their technique produces very smooth transi-
tions between arbitrary objects. Figure 2.4 is an example fromWang et al. Figure 3 [XJ06].

Xu et al. [YY04] use Poisson equations to generate missing mesh surfaces and cre-
ate smooth transitions. To fuse together two meshes Xu et al. [YY04] extract the border
points from each mesh and find correspondence between the vertices of the two borders.
Then the local orientations of each vertex are computed. An intermediate border is
created, which can be a simple interpolation of the two borders. The original borders
are updated to have the same connectivity as the intermediate border. Then the local
orientations of the vertices of the borders are compared to the intermediate border and
propagated from the intermediate border to the two meshes. Finally a linear system is
set up for all vertices and solved to create the new fused mesh. A disadvantage of all
Poisson based techniques is, that the larger the gaps to fill are, the worse the result gets.
Figure 2.5 shows some result from Xu et al. Figure 1 [YY04].

Figure 2.5: Result of the Poisson based technique. It merges together several different
parts to create a four-armed wing centaur with smooth transitions.
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2.1. Mesh techniques

Gao et al. presented a work, where a field of Bezier control points is used to con-
struct a smooth surface between two meshes [XW15]. First they extract the borders of
the meshes and smooth them. Then they create Bezier control points with their own
technique. They are using so called control lines, which go parallel and perpendicular to
the borders. This is how they overcome the fact, that the crown has much denser vertices
than the root of the tooth. Then the Bezier surface is sampled to get new vertices. The
sampling points are increasing when going from the root to the crown to match the
density of the vertices. In the end they are smoothing their result.

From our own observation the most of the non-overlapping techniques all share similar
steps, which are:

1. Extracting contours of the borders of the objects

2. Finding correspondence between the contours

3. Create transition via interpolation

4. Tessellation

Extracting contours

There are various ways to achieve it. For example, in the approach presented by Lu
et al. [MT09] edges, which are only used in one face, are searched in the mesh and
are thus borders. The disadvantage of their technique is, that it only works for open
meshes. However the advantage is, that the artist does not have to specify where to
fuse the objects together. Wang et al. [XJ06] use defined planes to get the borders. The
advantage is, that we get a coplanar contour and do not have to project them onto a
plane like Lu et al. [MT09] did. The disadvantage is, that the user has to specify the planes.

The technique presented by Gao et al. [XW15] is a special case, because they do part
of the step “Cut parts” from the artists workflow. This is because in their work they
have given the crown of the tooth, which is already a cut part, and the whole tooth
in a lower resolution, from which they want to cut off the crown at its border. As the
first step they search for the mesh opening of the crown like Lu et al. [MT09] did. With
that border they use a closest point algorithm to get border points on the tooth root
mesh. For their purpose using a plane would be unacceptable, because they would lose
information that they want to preserve as much as possible. Using this technique in the
modeling process means, that the artist has to cut only one mesh and place it over the
other one. The second mesh is cut automatically according to the border of the first
mesh. This technique could also be an overlapping technique, but we decided to classify
it as a non-overlapping technique. After the first step we get two borders with a gap in
between, which has to be filled.
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2. Overview of blending techniques

Finding correspondence

(a) Contours having the wrong cor-
respondence.

(b) Contours having the correct cor-
respondence.

Figure 2.6: Transition with once the wrong and once the correct correspondence. We
achieved Figure a) by defining a correspondence with the vertex located at the opposite
site. So vertices at the bottom are corresponding to vertices at the top and vice versa.

To make the next step, creating transitions, even possible, we have to think about the
correspondence problem. If we do not take care of it, the result could look something
like in Figure 2.6a. The figure shows, that, for example, the point on the bottom of one
contour is interpolated with the point on the top of the other contour. Figure 2.6b shows
how the transition looks like, if the correspondence is correct. This section gives more
insight into this problem.

One possible solution for this problem would be expressing the contours as implicit
functions and work with them like Wang et al. [XJ06] or O’Brien et al. [GT99] did. For
every contour, the x and y axes has to be the same, because the implicit functions are
defined based on them. This ensures perfect correspondence. It requires to work with
mathematical functions, but seems to work for arbitrary contours.

Xu et al. [YY04] are projecting the contour of one object onto the other, in the user
defined direction. For each vertex they shoot a ray in the defined direction and select the
nearest vertex on the second object.

Another solution is to create an angular correspondence in the projected 2D space
by shooting rays like Lu et al. [MT09] did, which is displayed in Figure 2.3 out of their
work. They lay the contours on top of each other and shoot rays from the midpoints of
the contours to every vertex. Every ray hits both contours and creates correspondence
this way. This works well in many cases, but has some downsides. A ray can either hit
no edge of the contour or multiple edges, which leads to problems, that are explained
further. Figure 2.7 shows an example, which is described in the following. If we have
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2.1. Mesh techniques

Figure 2.7: Mid-Point of all vertices is outside of the contour. So some rays, marked in
red, do not hit any edge of the contour. Therefore no correspondence can be found.

given such a contour, the mid point will be definitely outside and thus it will be hard for
any other contour to create a correspondence. The rays at the angles marked in red do
not hit the contour, consequently another contour can not match its hit to something.

Even if the mid point is inside the contour, another problem can occur. An exam-
ple can be seen in Figure 2.8. Here, each ray has one to three intersections. The

Figure 2.8: Contour with multiple correspondence solutions and information loss. If we
want to interpolate to that contour, it will either interpolate to the green or to the blue
contour. We are losing the information of some features.

algorithm has to decide, which point it should take. It could take the most farthest
away point, then the resulting contour would be like drawn in green. If it takes the most
nearest or first point, then the resulting contour would be like drawn in blue. In both

13



2. Overview of blending techniques

cases we lose some of the information of the original contour. Interpolating any contour
onto this points will not give us the expected result.

In general, this angular correspondence approach only works for convex contours. Oth-
erwise, it will fail completely or at least produces some unwanted artifacts, where the
transition does not fit to the border contours. An advantage of that approach is, that it
is very fast to implement.

In conclusion, it is very important how a correspondence between the contours is cre-
ated, otherwise it will not produce pleasant results. Fred Park [Par11] shows some
other possibilities to describe shapes. That could be potentially used to create a good
correspondence.

Create transition

The transition can be done in several ways. Using implicit functions like Wang et
al. [XJ06] and O’Brien et al. [GT99], or Poisson equations like Xu et al. [YY04]. In detail
Wang et al. [XJ06], for example, use another plane behind the border plane to calculate
the difference of the implicit function. That way they get the change of the function
in the blending direction. With the implicit functions of the border contours and the
change of them given, they use Hermite basis functions to create the transition surface.

Figure 2.9: An example of a linear interpolation with our algorithm. The results are
good, but can produce sharp edges at the seams.

Gao et al. [XW15] are creating control points using their own alternate Bezier surface.
One way is to just interpolate the corresponding contour points, like Lu et al. [MT09]
did and we did as well. When we are just using linear interpolation the results look
already good - see Figure 1.3b for reference. But when the heads are moved apart from
each other (see Figure 2.9) linear interpolation probably gives not the preferable result
in that case. Therefore we advise to offer the artist some options and possibilities to

14



2.1. Mesh techniques

Figure 2.10: Different parameterizations of the transition and their outcome are shown.
This leads to more flexibility and more possible transitions.

parameterize the transition. Wang et al. are offering parameterization as well, as shown
in Figure 2.10 from [XJ06] Figure 4.

Tessellation

Tessellation is an finalization step, which only makes the mesh more appealing and
easier to process further. The point of that step is, to give the generated mesh the
same structure of vertices and edges as the source objects. Generally speaking the more
homogeneous the resulting mesh is the better. Several authors like [NC03] Oñate et al.,
[BL10] Liu et al., [Mor01] Moreton and [MF09] Boulos et al. covered tessellation.

Some of the authors use their own tessellation technique like, for example, Wang et
al. [XJ06]. Signoroni et al. [MC15] are using an adapted version of the Delaunay tessella-
tion. The tessellation of Gao et al. [XW15] is immanent in their technique. They have
given a high resolution crown and a low resolution root and are thus using their own
Bezier surface, which is creating an already tessellated transition surface.

2.1.2 Overlapping techniques

Other than the non-overlapping techniques, there are no similar steps to be observed
in other techniques. They all have unique approaches. We are naming the overlapping
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2. Overview of blending techniques

techniques after the fact, that models have to be placed above each other, so that they
are intersecting. These techniques are resolving the intersection with a smooth transition.
The overlapping techniques are not so promising for artists, because the merging often
can be done very fast by hand. More details will be shown in the evaluation. Nevertheless
they could be used for automated creation of random characters, for example, or when
the artist has to merge many parts a lot of the time.

Figure 2.11: The rolling ball technique with all the terminology and what they mean
graphically.

The approach of Yong et al. [YSL05] is a typical example for an overlapping technique.
Their technique is called “Rolling Ball”, because the blending result can be imagined as
a surface formed by a ball rolling around two target meshes. Figure 2.11 from Yong et
al. Figure 1 [YSL05] illustrates the main idea of the technique. The first step is to get the
intersection contour of the two meshes, which they call blending curve. This can be done
in various ways, which are suggested by the authors. For example, the intersection can
be detected automatically or selected by an user. The next step is to get base patches of
the two meshes. This is done by extracting all polygons in a specified radius r around
the blending curve. The radius is multiplied with a factor α. The α ensures, that an
intersection will exist, even when the vertices are far apart. Typically α is the factor
1.75, but if the vertices are further away from each other, the value should be higher.
All vertices are moved along their normal for the radius r. Then the moved patches are
intersected. The intersection of the patches is then called the spine curve. For all vertices
in the spine curve a profile curve is created and then connected to a blending surface.
This gives a smooth blending between the objects around the intersection contour, like we
would draw with an opaque ball (see Figure 2.12). The transition can be parameterized
to be additive or subtractive, so there is a variety of different transitions that can be
achieved.
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2.1. Mesh techniques

Figure 2.12: Result of the rolling ball technique. The sharp edge at the intersection got
blended with a smooth transition.

Sharf et al. [AS06] is another good example. The artist has to drag one part over the
other until they overlap and their algorithm automatically snaps them together. It uses
a closest point algorithm to find correspondence in the overlapping area of the models.
The algorithm creates a smooth transition by locally interpolating corresponding vertices.
The big advantage here is, that the artist does not have to place the parts precisely.

2.1.3 Morphing techniques

The workflow of the artists is different, when using morphing techniques, depending on
the technique used. For example, instead of cutting and placing parts of objects, the
artist has to specify a border on both objects, which should correspond. All vertices at a
specified side of the borders are then morphed via interpolation or replaced entirely with
something else.

A good example for a morphing technique is the work of Mitani et al. [TK99]. They
create correspondence between the faces of the meshes and interpolate them using a
parameterizable curve to create smooth transitions. The user just has to select the
corresponding contours and specify the interpolation function to get a new morphed
mesh. Figure 2.13 shows some result from Mitani et al. Figure 9 [TK99].

Lévy et al. [BL03] did something similar. With their technique it is possible to combine
meshes in their parameter space, which is the 2D representation of the mesh like the
UV-Map. By approximating a minimal energy surface, they are recalculating the new 3D
object. The user specifies the parts, which he wants to merge together and a transition
area on both models. Their algorithm searches for corresponding vertices and cuts the
models on the found contours to merge them together using Poisson equations.

Another good example is the work of Au et al. [XH07]. They use Poisson equations as
well. With their technique the user has to only select an area, where the border should
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2. Overview of blending techniques

Figure 2.13: The morphing of the head of an eagle onto the front of a helicopter. The
artist has to define the border on each source object, marked in red.

be, which is easier and faster for the user. They are finding the best contours by taking
the border with the shortest path in the user specified area of one mesh and trying to
find a similar corresponding border with a least-squares solution in the user specified area
on the other mesh. With this approach they try to minimize the distortion at the seams.

Shilane et al. also presented a solution to fuse together 2 meshes, described in [TF04] chap-
ter 6.2. In general their work empowers everyone to select parts of objects from their 3D
model database and combine them to a new model.

The morphing techniques work best, when there are similar parts in the source meshes,
that should be replaced or mixed, but that is not required but can lead to distortions at
the seams.

2.2 Volumetric techniques

The difference of the volumentric techniques to the others is, that they are based on
volumetric representations of the models. A possible approach would be to convert to

18



2.2. Volumetric techniques

a volumetric representation, process it further and convert it back to a mesh again.
Museth et al. [KM02] used this approach and presented various operations which can
be applied on volumetric models, including blending, smoothing, opening and closing.
In particular they are using Level Set Models to work with, which are deformable im-
plicit surfaces, where the deformation is controlled by a speed function. The resulting
models can be transformed back into meshes with, for example, the Marching Cubes
Algorithm [WEL87]. Great advantages of their technique are, that they always produce
non-self-intersecting surfaces and there are no issues with edge connectivity or mesh
quality in general. Recalculating back to a mesh always gives a high quality mesh, which
is perfectly fit to process further. Disadvantages can be a higher memory consumption
and overhead when transforming models from one representation to another. In general
these techniques are better, when smooth results are needed, but Museth et al. [KM02]
claim, that they also can produce and keep sharp features. Figure 2.14 from Museth
et al. Figure 11 [KM02] shows how they created a winged 2 headed dragon with their
technique.

Figure 2.14: The head of the dragon is cut off, duplicated, merged together and again
fused with the body. Further the wings are taken from another model and merged with
the body. Finally a ring is blended onto the back of the dragon.

Signoroni et al. [MC15] use volumetric representations as well. They convert the models
to octree representations with their own vertex protection technique. They memorize
vertices around the borders to preserve them, when converting back to a mesh. The
borders have to be chosen by the user. The gap between the borders is filled following
Poisson equations. After they created the missing parts, they cut out these new parts
and insert them back into the original mesh. The protected border vertices are used
to make this possible. The great advantage is, that the transformation to volumetric
representation and back does not change the mesh globally, preserving all details.
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2. Overview of blending techniques

Another technique would be to use Metaballs. The advantage is, that they are smoothing
merging objects naturally. There can not be self-intersecting surfaces either and all
transitions are smooth. The disadvantage is, that we need source models in metaball
presentation, otherwise we need to convert them to metaball presentation first.

20



CHAPTER 3
Our methods

We implemented our own algorithms for evaluation purposes. One algorithm is an
additive non-overlapping technique. It produces good results, which are shown in the
evaluation. Another algorithm is an additive overlapping technique. It does not produce
good results, but it is presented as an reference for the reader.

3.1 Non-overlapping technique

3.1.1 Extracting contours

For the implementation in this work a similar teachnique Wang et al. [XJ06] presented
is used. The user has to specify two points. The direction from one point to the other
is the blending direction. Each point has to lie on the borders of one object. A plane
at each point is created orthogonal to the blending direction. The intersection with the
plane gives the contour of each object (see Figure 3.1). The yellow dot on the left plane
is the blending start point and the orange dot on the right plane is the blending end
point. It also could be the other way round.

In the example we can see, that each object can have multiple borders. The dragon heads
got some kind of horn on top of them. In general, that is a huge problem, because how
should the algorithm know, from which border it should create a transition - or should it
even create a transition from all borders and how should this look like, if that is the case.
The solution is to just use the border with the largest perimeter. A tool, which should
help artists, has to offer some options here, so that it is useful in many cases. In this
case, it would be the option “Only use border with highest perimeter”. Another solution
is to select the border, which midpoint is the closest to the midpoint of the contour to
blend to.
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Figure 3.1: Getting borders of the objects by intersection them with defined planes. The
yellow and orange dots mark the blending start and end point, set by the user. The
planes are created orthogonal to the direction from the start to the end point. The
objects do not have to be perfectly cut, so, for example, the horn on the right side is
preserved in the final mesh.

3.1.2 Finding correspondence

We are using a method based on the angular correspondence by Lu et al. [MT09]. Because
of the disadvantages of that method, another method, which can cope with the presented
problems in chapter 2.1.1 was found, but it is not perfect either. The approach is
explained based on Figure 3.2. First, the midpoint of one contour is computed and a ray
in any direction is shot. We are using the direction of the x-axes, for example. We get
the intersection with the ray of each contour and take the nearest vertex. The two in this
way found points are now the start points of each contour. In Figure 3.2 that is the green
and blue dot on the left side. They are at distance zero. Then we calculate the distances
from the start vertex to the next vertices clockwise for each contour. This is simply done
with the linear distance between the vertices. This is enough for good results, but one
can also use more accurate and complicated methods. As a result, we get two contours
with their perimeter. We calculate a corresponding point for each vertex, when simply
calculating how much percent of the perimeter this vertex is away from the start point.
So we can calculate the point on the other contour, that lies on that percentage of its
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Figure 3.2: Two contours and the found correspondence with our distance matching
approach. A ray is shoot to the left or in any other direction. The nearest vertex counter
clockwise is selected on each contour. They do correspond and are set to distance zero.
A correspondence for the other vertices is found by moving along the contours. The dots
on the right side, for example, are at about 50% of the distance along the contour.

Figure 3.3: Correct correspondence is found with our distance matching approach, even
on non-convex contours. When multiple edges of the same contour are hit by a ray, the
vertex on the most farthest away edge is selected.

perimeter. If we are, e.g., calculating 25% and the contour got vertices at 20% and 30%,
then linear interpolation between the two points is used. So, e.g., the second green dot
on the right side of the circle in Figure 3.2 is on about 50% and it corresponds to the
second blue dot on the right side, which lies on about 50% on the other contour.

To overcome the problem stated in Figure 2.7 and Figure 2.8, we try out several rays in
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(a) Not enough points on the contour. (b) Enough points on the contour.

Figure 3.4: Our distance matching method has some downsides as well. The Figure a)
shows an artifact which can occur. When there are not enough vertices on the contour,
some arcs of the other contour can be cut off, shown with the red line. In Figure b) the
problem is solved by subdividing the cone.

different angles, until we get an intersection with both contours. In addition, we take the
intersection which is the farthest away, in the case there are more than one, to avoid to
get a twist as shown in Figure 2.6a. Based on Figure 3.3 we explain why this can happen.
It shows the correct correspondence when shooting a ray to the left. We take the red dot
for the circle, because there is no other option. But for the other contour, we have to
take the farthest away intersection, marked as purple. If we would take the blue dot, the
interpolation would have a twist in it, because it does not correspond to the red dot, but
to the cyan dot. The correct correspondence is marked with the dotted lines.

(a) e−2.5∗x3 . (b) e−5∗x3 . (c) e−25∗x3 .

Figure 3.5: Different transition functions and their outcome. By parameterizing the
blending with a function, many different transitions are possible. This gives artists more
options and freedom.
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As mentioned before, the approach has some downsides as well. If there are not enough
points on a contour, artifacts will occur such as the transition does not fit perfectly to
parts of the contours. This is showed in Figure 3.4. In Figure 3.4a it can be seen, that
the inserted surface does not perfectly fit onto the mesh. This occurs, because the cone
has just one vertex at the tip and the next vertices are on the sphere. Assuming, the tip
got a distance percentage of 25%. Then a point at 25% on the other contour is found.
Assuming the next vertex got a distance percent of 40%, a point at 40% on the other
contour is found and connected. This is marked as the red line. When there is a huge
distance between 2 points, it could be, that an arc of the other contour is cut off. In
Figure 3.4b this problem is fixed by subdividing the cone a bit. Another solution would
be to just take, e.g., 100 points on each contour, uniformly sampled at every percent.
This way, there should be enough points as well, but probably the merging with the
meshes and tessellation needs to be better.

3.1.3 Create transition

We are creating the transition by interpolating one contour to the other. The transition
can be expressed by a function and therefore parameterized. For the approach in this
thesis, the function itself is of less importance, as long as it goes from zero to one in
the function range zero to one. In Figure 3.5 a variation of a Gaussian-like function
can be seen. It may not look aesthetic in this example, but this depends on the user’s
preferences. The parameterization with any function is very powerful and allows almost
every imaginable transition.

(a) sin(x ∗ π)/2. (b) sin(x ∗ π)/6. (c) sin(x ∗ π)/10.

Figure 3.6: Transition function combined with different turn rate functions. We used
the transition function e−5∗x3 to produce the shown results. With the possibility of an
additional turn rate function, even more freedom for creating the transition is reached.

The only thing that looks strange in Figure 3.5b is, that the middle parts of the necks
are too thin. To correct this issue, the idea is to rotate the contours in the middle. For
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this purpose a turn rate function in addition to the transition function was introduced.
The axis for rotation is calculated depending on the relation between the midpoints of
the contours. As the contours are defined in the local space of the intersecting planes,
the up-axis is always the blending direction. It is as easy as taking the crossproduct of
the up-vector and the difference between the midpoints. The rotation value is defined by
functionvalue ∗ π. A function value of one equals 180 degrees of rotation. If the turn
rate function is not used, it simply has to be set to zero. The rotation is executed in the
local plane space, before transforming the contours back to world space.

In search for a function, that would slightly turn the contours, until the mid of the
transition was reached and turns back again afterwards, the function sin(x ∗ π)/6 was
found to be suitable. With that function, in addition to the transition function, the
results shown in Figure 3.6 were reached.

Figure 3.7: An example showcase of a snaky dragon neck to demonstrate the power of
our parameterizable functions. We achieved that with the transition function (sin(π/2 +
x ∗ 3 ∗ π) + 1)/2 and the turn rate function sin(x ∗ 3 ∗ π)/6.

As a result, the combination of that two functions allows even more freedom in parame-
terizing the transition. With the transition function (sin(π/2 + x ∗ 3 ∗ π) + 1)/2 and the
turn rate function sin(x ∗ 3 ∗ π)/6 the snaky looking transition shown in Figure 3.7 has
been created.

3.2 Overlapping technique
We tried to find an overlapping technique that works similar then our non-overlapping
technique. Although this approach was not successful, it is presented as an reference for
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Figure 3.8: The setup of the three-headed dragon with overlapping meshes.

Figure 3.9: The blending of the three-headed dragon done by hand.

the reader. There are some drawbacks and thus the results do not look satisfying. The
drawbacks are explained while describing our method. An example is shown in Figure 3.8.
In Figure 3.9 we accomplished to do the blending by hand. That is how it should look like.

The user has to specify a starting and ending point for blending. After that the blending
space between the 2 points is sampled by creating many planes in regular intervals. For
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a better understanding the Figure 3.10 is shown. To obtain the contours the planes are

Figure 3.10: The three-headed dragon sliced by many planes. The contours of the
intersections with each plane are used for the further blending.

intersected with all objects. In the following sections the body of the dragon is called
root and the heads are called objects. There are two major steps which have to be done.
One step is, to make the contours of all objects overlap in the mid of the root contour.
The second step is, to make a transition from the root contour to the merged contour of
all objects.

Figure 3.11: Dragging the contours of the object to the mid of the root contour. The
purple point is dragged onto the orthogonal plane, which goes through the root mid. The
nearer the plane is, the more the point gets dragged to it.

The first step is done for each object separately, which is described in Figure 3.11. The
vector between the mid points of the contours is calculated. Then, for each vertex in the
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object contour, the distance to the orthogonal plane to the mid-mid-vector is calculated.
The vertex in the graphic is marked as a purple dot. The vector from the root mid to the
vertex is taken and then simply the dot product with the mid-mid-vector is calculated.
This is the distance from the vertex to the orthogonal plane, marked as purple dotted
line. The minimal distance is saved and used later again.

For each vertex of the object contour new coordinates are calculated by dragging the
vertex to the orthogonal plane. This happens in a Gaussian ratio with the function
α ∗ e−gaussiness∗(distance−minDistance)2 . α should be greater than 1 to ensure, that the
contours of all objects are actually overlapping. In this case α = 1.15 was used which
showed good results. The gaussiness describes how fast the ratio gets to zero. The greater
the distance deviates from the minDistance the more it reaches zero. In the described
example a gaussiness of 17 was used. The ratio is further multiplied by a ratio, which
goes from zero to one, to get a smooth transition surface. The new point for each vertex
is then calculated by oldPoint−midMidV ectorNormalized ∗minDistance ∗ ratio. A
defined slice between the end blend point and the last contour of the root object should
look like in Figure 3.12.

Figure 3.12: All the object contours dragged together to the root mid. The solid lines are
the contours of the objects and the dotted lines are the resulting contours after dragging.

The next step calculates the contours from the defined slice to the blend start point as
displayed in Figure 3.13. The object contours as well as the root contour are visible. The
inner contour, marked as blue, has to be interpolated to the outer contour, marked as
red. An unsuccessful attempt was made to get the inner and outer contour and to build
up correspondence in a single step by using the angular approach like in Figure 2.3. The
main reason why this test failed are the horns of the dragon heads. Trying a different
approach, however, would not have been within all reasonable efforts and would have
exceeded the extent of this work. The main problem which was faced, was to merge the
contours to get the inner and outer contour. The results in Figure 3.14 are not satisfying.
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Figure 3.13: The inner and outer contour extracted of the merged dragged contours. The
red line indicates the other contour and the blue line the inner contour.

Figure 3.14: The three-headed dragon after applying the algorithm. Some artifact can
be seen between the necks on the left side, for example.

As the described approach is additive, maybe a combination of additive and subtractive
methods would show better results.
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CHAPTER 4
Results and evaluation

This chapter shows, how much time can be potentially saved with the use of tools. We
are evaluating only looking at the left path of the artists workflow from Figure 1.1. We
compare the time the artist needs to merge parts of models together by hand and the
time the artist needs to merge them with the algorithm, which is mainly the time needed
to setup the parameters correctly. Our experiments are all built up as follows: We are
cutting and placing parts of models in the scene. This is our initial setup. Then we start
to measure the time until the models are merged together. Once we measure the time
to merge the models by hand and once the time to merge the models with help of the
algorithm.

The first example is the three-headed dragon. It took us 24 minutes and 14 seconds to
get an acceptable result by hand, which is shown in Figure 4.1.

(a) Dragon from the top. (b) Dragon from the side. (c) Dragon from the front.

Figure 4.1: The three-headed dragon connected by hand from different point of views.

The generated transition only took 1 minute and 37 seconds. This is the time we
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needed to specify the blending start and end point. The results are displayed in Fig-
ure 4.2. All the examples and the time needed are summarized in the table 4.1.

(a) Dragon from the top. (b) Dragon from the side. (c) Dragon from the front.

Figure 4.2: The three-headed dragon connected with our algorithm from different point
of views.

(a) Created by hand. (b) Created by algorithm.

Figure 4.3: The merging result of the walking hand. One time done by hand and one
time done by our algorithm.

The results show, that the algorithm is a great enhancer of time efficiency, if the
results are satisfying enough for the respective purpose. If needed, optimizations are still
possible by hand afterwards. In Figure 3.9, the heads are overlapping the body, which
took us only 2 minutes and 54 seconds to be merged by hand. Through these quick
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retouches the result is improved immediately. Therefore, the use of algorithms does not
give great advantages in overlapping cases.

The second example is the walking hand seen in Figure 4.3. The meshes from [fis11] and [Shp15]
were used as a basis. It took us 1 minute and 45 seconds with the algorithm and 4
minutes and 59 seconds by hand to finish the process. Accordingly, the smaller the
distance between the meshes, the faster the merging by hand.

(a) Created by algorithm.

(b) Created by algorithm and edited by hand.

(c) Created completely by hand.

Figure 4.4: Example of the construction of a bridge. The Figure a) shows the result of
our algorithm with the auxiliary part and b) how we updated it afterwards. Figure c)
shows the result without the use of algorithms.

The next example is the construction of a bridge given 2 boxes on the left and right
side. A small piece of mesh was inserted in the middle as auxiliary. Then we ran the
introduced algorithm twice with linear transition function x and turn rate function x/2.
The output is shown in Figure 4.4a. Afterwards a long box on the top of it was added.
This process took 3 minutes and 3 seconds in total. Doing everything by hand took us 1
minutes and 19 seconds. The results are displayed in Figure 4.4. Using the algorithm
in this case is possible, but not reasonable. A bridge is easily created by subtracting a
cylinder from a long box. With this example we want to show, that the use of a tool
does not save time by itself. It can be used, where it creates no benefit or even decreases
the productivity.
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Figure 4.5: Initial Setup of the octopus man.

(a) From the front/side. (b) From the bottom.

Figure 4.6: The octopus man created by our algorithm from different point of views.

Furthermore the octopus man is introduced as an example. The setup is shown in
Figure 4.5. Using the algorithm it took 1 minute and 44 seconds to get the result seen in
Figure 4.6. Connecting everything by hand took us 16 minutes and 24 seconds, shown
in Figure 4.7. In this example the time difference is significant. Generally speaking the
more objects have to be merged in one single step and the more complex the transition is,
the more time efficient is the use of an algorithm. In our opinion the generated transition
also looks better than what we have done by hand. In the end this depends on the
preferences of the user.

To summarize this section, it has been proven, that a tool can be a huge help for
modelers. It has to be kept in mind that this is just another algorithm and no algorithm
fits every possible scenario. The usability of the algorithm depends on the intended
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(a) From the front/side. (b) From the bottom.

Figure 4.7: The cctopus man created by hand from different point of views.

Example Time by hand Time by algorithm

three-headed dragon, non-overlapping 24min 14sec 1min 37sec

three-headed dragon, overlapping 2min 54sec no good result

the walking hand 4min 59sec 1min 45sec

bridge 1min 19sec 3min 3sec

octopus man 16min 24sec 1min 44sec

Table 4.1: Example list with the time needed to merge the objects by hand and with our
algorithm.

results of the user, as stated in the examples. In some cases there is a significant saving
of time, whereas in other cases using conventional methods may be the better choice.
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CHAPTER 5
Conclusions and future work

The work gives an overview of possible techniques the user can test in specific scenarios.
We highlighted the opportunities and limitations of every technique. The blending
techniques were categorized and it was summarized what is important, e.g., contours
and correspondence. Moreover, we have introduced own implementations with some
improvements and different attempts. We believe there is a huge potential for future
research in this field. For example, an algorithm could add some features on the transition
surface, like bumps, spikes or something else.

The non-overlapping methods have a greater impact on the modeling time, because
it takes long to merge the meshes together by hand when there is a greater distance
between the objects, compared to cases, where the meshes are overlapping each other.
Nevertheless, there are possible advantages of overlapping techniques, e.g., when we want
to generate random arbitrary creatures. This would save a huge amount of time for
artists as well.

On the whole, there is a huge potential for new tools, which help to fuse meshes
together. Currently there is no tool, which is using different techniques and automatically
decides which one to use for the current case. This would be a field for future research to
create constantly improved tools for artists. But even our basic algorithm can decrease
the modeling time by a sufficient amount of time.

On the other side using such tools do not save a single user time by itself. To be
more productive it is key to know when to use which method. Choosing a wrong tool
leads to less productivity. Knowing the advantages and disadvantages of existing tools
and brand new ones and in which cases we should use them, is the key to success.
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